Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 653: 123862, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307399

RESUMEN

Pharmaceutical three-dimensional printing (3DP) is now in its golden age. Recent years have seen a dramatic increase in the research in 3D printed pharmaceuticals due to their potential to deliver highly personalised medicines, thus revolutionising the way medicines are designed, manufactured, and dispensed. A particularly attractive 3DP technology used to manufacture medicines is stereolithography (SLA), which features key advantages in terms of printing resolution and compatibility with thermolabile drugs. Nevertheless, the enthusiasm for pharmaceutical SLA has not been followed by the introduction of novel excipients specifically designed for the fabrication of medicines; hence, the choice of biocompatible polymers and photoinitiators available is limited. This work provides an insight on how to maximise the usefulness of the limited materials available by evaluating how different formulation factors affect printability outcomes of SLA 3D printed medicines. 156 photopolymer formulations were systematically screened to evaluate the influence of factors including photoinitiator amount, photopolymer molecular size, and type and amount of liquid filler on the printability outcomes. Collectively, these factors were found highly influential in modulating the print quality of the final dosage forms. Findings provide enhanced understanding of formulation parameters informing the future of SLA 3D printed medicines and the personalised medicines revolution.


Asunto(s)
Impresión Tridimensional , Estereolitografía , Polímeros , Excipientes , Tecnología Farmacéutica/métodos , Formas de Dosificación
2.
Pharmaceutics ; 13(5)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922928

RESUMEN

Pharmaceutical applications of 3D printing technologies are growing rapidly. Among these, vat photopolymerisation (VP) techniques, including Stereolithography (SLA) hold much promise for their potential to deliver personalised medicines on-demand. SLA 3D printing offers advantageous features for pharmaceutical production, such as operating at room temperature and offering an unrivaled printing resolution. However, since conventional SLA apparatus are designed to operate with large volumes of a single photopolymer resin, significant throughput limitations remain. This, coupled with the limited choice of biocompatible polymers and photoinitiators available, hold back the pharmaceutical development using such technologies. Hence, the aim of this work was to develop a novel SLA apparatus specifically designed to allow rapid and efficient screening of pharmaceutical photopolymer formulations. A commercially available SLA apparatus was modified by designing and fabricating a novel resin tank and build platform able to 3D print up to 12 different formulations at a single time, reducing the amount of sample resin required by 20-fold. The novel SLA apparatus was subsequently used to conduct a high throughput screening of 156 placebo photopolymer formulations. The efficiency of the equipment and formulation printability outcomes were evaluated. Improved time and cost efficiency by 91.66% and 94.99%, respectively, has been confirmed using the modified SLA apparatus to deliver high quality, highly printable outputs, thus evidencing that such modifications offer a robust and reliable tool to optimize the throughput and efficiency of vat photopolymerisation techniques in formulation development processes, which can, in turn, support future clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...